Part Number Hot Search : 
KK4518BD T145471J IDT72V FDD5N50F D100L GRM31CR7 4545000 GBLA02
Product Description
Full Text Search
 

To Download BCR12CS-12 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mar. 2002 23 1 4 type name voltage class 10.5 max 5 1 0.8 4.5 1.3 0.5 3.0 +0.3 ?.5 0 +0.3 ? (1.5) 1.5 max 1.5 max 8.6 0.3 9.8 0.5 2.6 0.4 4.5 ? outline drawing dimensions in mm to-220s 24 1 3 1 2 3 4 t 1 terminal t 2 terminal gate terminal t 2 terminal ? measurement point of case temperature mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type application contactless ac switches, light drimmer, electric flasher unit, control of household equipment such as tv sets ?stereo ?refrigerator ?washing machine infrared kotatsu ?carpet ?electric fan, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications bcr12cs ? t (rms) ...................................................................... 12a ? drm ....................................................................... 600v ? fgt ! , i rgt ! , i rgt # ............................................ 20ma symbol v drm v dsm parameter repetitive peak off-state voltage ? 1 non-repetitive peak off-state voltage ? 1 voltage class unit v v maximum ratings 12 600 720 symbol i t (rms) i tsm i 2 t p gm p g (av) v gm i gm t j t stg parameter rms on-state current surge on-state current i 2 t for fusing peak gate power dissipation average gate power dissipation peak gate voltage peak gate current junction temperature storage temperature weight conditions commercial frequency, sine full wave 360 conduction, t c =98 c ? 3 60hz sinewave 1 full cycle, peak value, non-repetitive value corresponding to 1 cycle of half wave 60hz, surge on-state current typical value unit a a a 2 s w w v a c c g ratings 12 120 60 5 0.5 10 2 ?0 ~ +125 ?0 ~ +125 1.2 ? 1. gate open. refer to the page 6 as to the product guaranteed maximum junction temperature 150 c
mar. 2002 supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type ? 2. measurement using the gate trigger characteristics measurement circuit. ? 3. case temperature is measured on the t2 terminal. ? 4. the contact thermal resistance r th (c-f) in case of greasing is 1.0 c/w. ? 5. test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. test conditions commutating voltage and current waveforms (inductive load) 1. junction temperature t j =125 c 2. rate of decay of on-state commutating current (di/dt) c = 6.0a/ms 3. peak off-state voltage v d =400v symbol i drm v tm v fgt ! v rgt ! v rgt # i fgt ! i rgt ! i rgt # v gd r th (j-c) (dv/dt) c parameter repetitive peak off-state current on-state voltage gate trigger voltage ? 2 gate trigger current ? 2 gate non-trigger voltage thermal resistance critical-rate of rise of off-state commutating voltage test conditions t j =125 c, v drm applied t c =25 c, i tm =20a, instantaneous measurement t j =25 c, v d =6v, r l =6 ? , r g =330 ? t j =25 c, v d =6v, r l =6 ? , r g =330 ? t j =125 c, v d =1/2v drm junction to case ? 3 ? 4 t j =125 c unit ma v v v v ma ma ma v c/w v/ s typ. ! @ # ! @ # electrical characteristics limits min. 0.2 10 max. 2.0 1.6 1.5 1.5 1.5 20 20 20 1.8 performance curves refer to the page 6 as to the product guaranteed maximum junction temperature 150 c 10 0 23 5710 1 80 40 23 5710 2 44 120 160 200 60 20 100 140 180 0 3.8 0.6 1.4 2.2 3.0 1.0 1.8 2.6 3.4 10 2 7 5 3 2 10 1 7 5 3 2 10 0 7 5 3 2 10 1 t j = 125 c t j = 25 c maximum on-state characteristics on-state current (a) on-state voltage (v) rated surge on-state current surge on-state current (a) conduction time (cycles at 60hz) ? 5
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type refer to the page 6 as to the product guaranteed maximum junction temperature 150 c 10 0 23 10 1 5710 2 23 5710 3 23 5710 4 10 2 7 5 3 2 10 1 7 5 3 2 7 5 3 2 10 1 v gd = 0.2v p gm = 5w v gm = 10v v gt = 1.5v i gm = 2a i rgt i i fgt i, i rgt iii p g(av) = 0.5w 10 1 10 3 7 5 3 2 60 20 20 10 2 7 5 3 2 60 100 140 4 4 40 0 40 80 120 10 1 10 3 7 5 3 2 60 20 20 10 2 7 5 3 2 60 100 140 4 4 40 0 40 80 120 i fgt i i rgt i, i rgt iii 32 24 20 12 4 0 16 8 2 0 4 6 10 12 14 8 16 28 160 120 100 60 20 0 16 8 2 0 4 6 10 12 14 40 80 140 2.2 2.4 0 2.0 1.8 1.6 1.4 1.2 0.6 0.4 0.2 0.8 23 10 1 5710 0 23 5710 1 23 5710 2 23 10 2 5710 3 1.0 2 typical example typical example 360 conduction resistive, inductive loads curves apply regardless of conduction angle 360 conduction resistive, inductive loads maximum on-state power dissipation on-state power dissipation (w) rms on-state current (a) allowable case temperature vs. rms on-state current case temperature ( c) rms on-state current (a) maximum transient thermal impedance characteristics (junction to case) transient thermal impedance ( c/w) conduction time (cycles at 60hz) gate voltage (v) gate current (ma) gate trigger current vs. junction temperature junction temperature ( c) gate trigger voltage vs. junction temperature junction temperature ( c) 100 (%) gate trigger current (t j = t c) gate trigger current (t j = 25 c) 100 (%) gate trigger voltage ( t j = t c ) gate trigger voltage ( t j = 25 c ) gate characteristics ( , ? and ?? )
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type refer to the page 6 as to the product guaranteed maximum junction temperature 150 c 10 3 7 5 3 2 60 20 20 10 2 7 5 3 2 60 100 140 4 4 40 0 40 80 120 10 1 140 40 40 60 20 0 20 60 80 100 120 10 5 7 5 3 2 10 4 7 5 3 2 10 3 7 5 3 2 10 2 160 120 100 60 20 0 3.2 1.6 0 0.8 1.2 2.0 2.4 2.8 40 80 140 0.4 160 40 0 40 80 120 10 3 7 5 3 2 10 2 7 5 3 2 10 1 7 5 3 2 10 0 160 120 100 60 20 0 16 8 2 0 4 6 10 12 14 40 80 140 60 60 t2.3 120 120 t2.3 100 100 t2.3 160 100 80 40 20 0 140 40 40 60 20 0 20 60 80 140 100 120 60 120 typical example typical example typical example laching current vs. junction temperature laching current (ma) junction temperature ( c) allowable ambient temperature vs. rms on-state current ambient temperature ( c) rms on-state current (a) allowable ambient temperature vs. rms on-state current ambient temperature ( c) rms on-state current (a) repetitive peak off-state current vs. junction temperature junction temperature ( c) breakover voltage vs. junction temperature junction temperature ( c) holding current vs. junction temperature junction temperature ( c) natural convection no fins curves apply regardless of conduction angle resistive, inductive loads t 2 + , g typical example t 2 + , g + t 2 , g ? ? ? typical example distribution resistive, inductive loads natural convection curves apply regardless of conduction angle all fins are copper and aluminum 100 (%) holding current ( t j = t c ) holding current ( t j = 25 c ) 100 (%) repetitive peak off-state current ( t j = t c ) repetitive peak off-state current ( t j = 25 c ) 100 (%) breakover voltage ( t j = t c ) breakover voltage ( t j = 25 c )
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type refer to the page 6 as to the product guaranteed maximum junction temperature 150 c 10 1 10 3 7 5 3 2 10 0 23 5710 1 10 2 7 5 3 2 23 5710 2 4 4 44 i rgt iii i rgt i i fgt i 23 10 1 5710 2 23 5710 3 23 5710 4 120 0 20 40 60 80 100 140 160 10 1 23 10 0 5710 1 23 5710 2 7 5 3 2 7 5 7 3 2 10 0 supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c commutation characteristics critical rate of rise of off-state commutating voltage (v/ s) rate of decay of on-state commutating current (a /ms) breakover voltage vs. rate of rise of off-state voltage rate of rise of off-state voltage (v/ s) 100 (%) breakover voltage ( dv/dt = xv/ s ) breakover voltage ( dv/dt = 1v/ s ) gate trigger current vs. gate current pulse width gate current pulse width ( s) 100 (%) gate trigger current ( tw ) gate trigger current ( dc ) typical example typical example t j = 125 c i quadrant iii quadrant typical example t j = 125 c i t = 4a = 500 s v d = 200v f = 3hz i quadrant iii quadrant minimum charac- teristics value 6 ? 6 ? 6 ? 6v 6v 6v r g r g r g a v a v a v test procedure 1 test procedure 3 test procedure 2 gate trigger characteristics test circuits
mar. 2002 23 1 4 type name voltage class 10.5 max 5 1 0.8 4.5 1.3 0.5 3.0 +0.3 0.5 0 +0.3 0 (1.5) 1.5 max 1.5 max 8.6 0.3 9.8 0.5 2.6 0.4 4.5 ? outline drawing dimensions in mm to-220s 24 1 3 1 2 3 4 t 1 terminal t 2 terminal gate terminal t 2 terminal ? measurement point of case temperature mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type application contactless ac switches, light drimmer, electric flasher unit, control of household equipment such as tv sets stereo refrigerator washing machine infrared kotatsu carpet electric fan, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications (warning) 1. refer to the recommended circuit values around the triac before using. 2. be sure to exchange the specification before using. if not exchanged, general triacs will be supplied. bcr12cs i t (rms) ...................................................................... 12a v drm ....................................................................... 600v i fgt ! , i rgt ! , i rgt # ............................................ 20ma symbol v drm v dsm parameter repetitive peak off-state voltage ? 1 non-repetitive peak off-state voltage ? 1 voltage class unit v v maximum ratings 12 600 720 symbol i t (rms) i tsm i 2 t p gm p g (av) v gm i gm t j t stg parameter rms on-state current surge on-state current i 2 t for fusing peak gate power dissipation average gate power dissipation peak gate voltage peak gate current junction temperature storage temperature weight conditions commercial frequency, sine full wave 360 conduction, t c =123 c ? 3 60hz sinewave 1 full cycle, peak value, non-repetitive value corresponding to 1 cycle of half wave 60hz, surge on-state current typical value unit a a a 2 s w w v a c c g ratings 12 120 60 5 0.5 10 2 40 ~ +150 40 ~ +150 1.2 ? 1. gate open. the product guaranteed maximum junction temperature 150 c (see warning.)
mar. 2002 supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type ? 2. measurement using the gate trigger characteristics measurement circuit. ? 3. case temperature is measured on the t2 terminal. ? 4. the contact thermal resistance r th (c-f) in case of greasing is 1.0 c/w. ? 5. test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. test conditions commutating voltage and current waveforms (inductive load) 1. junction temperature t j =125 c/150 c 2. rate of decay of on-state commutating current (di/dt) c = 6.0a/ms 3. peak off-state voltage v d =400v symbol i drm v tm v fgt ! v rgt ! v rgt # i fgt ! i rgt ! i rgt # v gd r th (j-c) (dv/dt) c parameter repetitive peak off-state current on-state voltage gate trigger voltage ? 2 gate trigger current ? 2 gate non-trigger voltage thermal resistance critical-rate of rise of off-state commutating voltage test conditions t j =150 c, v drm applied t c =25 c, i tm =20a, instantaneous measurement t j =25 c, v d =6v, r l =6 ? , r g =330 ? t j =25 c, v d =6v, r l =6 ? , r g =330 ? t j =125 c/150 c, v d =1/2v drm junction to case ? 3 ? 4 t j =125 c/150 c unit ma v v v v ma ma ma v c/w v/ s typ. ! @ # ! @ # electrical characteristics limits min. 0.2/0.1 10/1 max. 2.0 1.6 1.5 1.5 1.5 20 20 20 1.8 performance curves the product guaranteed maximum junction temperature 150 c (see warning.) 10 0 23 5710 1 80 40 23 5710 2 44 120 160 200 60 20 100 140 180 0 0.5 1.5 2.5 3.5 1.0 2 3.0 4.0 10 2 7 5 3 2 10 1 7 5 3 2 10 0 7 5 t j = 150 c t j = 25 c maximum on-state characteristics on-state current (a) on-state voltage (v) rated surge on-state current surge on-state current (a) conduction time (cycles at 60hz) ? 5
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type the product guaranteed maximum junction temperature 150 c (see warning.) 10 1 10 3 7 5 3 2 10 2 7 5 3 2 4 4 10 1 10 3 7 5 3 2 10 2 7 5 3 2 4 4 i fgt i i rgt i, i rgt iii 32 24 20 12 4 0 16 8 2 0 4 6 10 12 14 8 16 28 160 120 100 60 20 0 16 8 2 0 4 6 10 12 14 40 80 140 2.2 2.4 0 2.0 1.8 1.6 1.4 1.2 0.6 0.4 0.2 0.8 23 10 1 5710 0 23 5710 1 23 5710 2 23 10 2 5710 3 1.0 2 10 0 23 10 1 5710 2 23 5710 3 23 5710 4 5 3 2 10 1 7 5 3 2 7 5 3 2 10 1 v gd = 0.1v p gm = 5w v gm = 10v v gt = 1.5v i gm = 2a i rgt i i fgt i, i rgt iii p g(av) = 0.5w 60 20 20 60 100 140 40 0 40 80 120 160 20 60 20 60 100 140 40 0 40 80 120 160 typical example typical example 360 conduction resistive, inductive loads curves apply regardless of conduction angle 360 conduction resistive, inductive loads maximum on-state power dissipation on-state power dissipation (w) rms on-state current (a) allowable case temperature vs. rms on-state current case temperature ( c) rms on-state current (a) maximum transient thermal impedance characteristics (junction to case) transient thermal impedance ( c/w) conduction time (cycles at 60hz) gate voltage (v) gate current (ma) gate trigger current vs. junction temperature junction temperature ( c) gate trigger voltage vs. junction temperature junction temperature ( c) 100 (%) gate trigger current (t j = t c) gate trigger current (t j = 25 c) 100 (%) gate trigger voltage ( t j = t c ) gate trigger voltage ( t j = 25 c ) gate characteristics ( , ? and ?? )
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type the product guaranteed maximum junction temperature 150 c (see warning.) 160 120 100 60 20 0 3.2 1.6 0 0.8 1.2 2.0 2.4 2.8 40 80 140 0.4 160 120 100 60 20 0 16 8 2 0 4 6 10 12 14 40 80 140 60 60 t2.3 120 120 t2.3 100 100 t2.3 10 5 7 5 3 2 10 4 7 5 3 2 10 3 7 5 3 2 10 2 60 20 20 60 100 140 40 0 40 80 120 160 10 3 7 5 3 2 10 2 7 5 3 2 4 4 10 1 60 20 20 60 100 140 40 0 40 80 120 160 160 40 0 40 80 120 10 3 7 5 3 2 10 2 7 5 3 2 10 1 7 5 3 2 10 0 160 100 80 40 20 0 140 60 120 60 20 20 60 100 140 40 0 40 80 120 160 typical example typical example typical example laching current vs. junction temperature laching current (ma) junction temperature ( c) allowable ambient temperature vs. rms on-state current ambient temperature ( c) rms on-state current (a) allowable ambient temperature vs. rms on-state current ambient temperature ( c) rms on-state current (a) repetitive peak off-state current vs. junction temperature junction temperature ( c) breakover voltage vs. junction temperature junction temperature ( c) holding current vs. junction temperature junction temperature ( c) t 2 + , g typical example t 2 + , g + t 2 , g ? ? ? typical example distribution resistive, inductive loads natural convection curves apply regardless of conduction angle all fins are copper and aluminum 100 (%) holding current ( t j = t c ) holding current ( t j = 25 c ) 100 (%) repetitive peak off-state current ( t j = t c ) repetitive peak off-state current ( t j = 25 c ) 100 (%) breakover voltage ( t j = t c ) breakover voltage ( t j = 25 c ) natural convection no fins, curves apply regardless of conduction angle resistive, inductive loads
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type the product guaranteed maximum junction temperature 150 c (see warning.) 10 1 10 3 7 5 3 2 10 0 23 5710 1 10 2 7 5 3 2 23 5710 2 4 4 44 i rgt iii i rgt i i fgt i 23 10 1 5710 2 23 5710 3 23 5710 4 120 0 20 40 60 80 100 140 160 23 10 1 5710 2 23 5710 3 23 5710 4 120 0 20 40 60 80 100 140 160 10 2 23 10 0 5710 1 23 5710 2 7 5 10 1 7 3 2 7 5 10 0 3 2 10 2 23 10 0 5710 1 23 5710 2 7 5 10 1 7 3 2 7 5 10 0 3 2 breakover voltage vs. rate of rise of off-state voltage (t j = 125 c) rate of rise of off-state voltage (v/ s) 100 (%) breakover voltage ( dv/dt = xv/ s ) breakover voltage ( dv/dt = 1v/ s ) typical example t j = 125 c i quadrant iii quadrant breakover voltage vs. rate of rise of off-state voltage (t j = 150 c) rate of rise of off-state voltage (v/ s) 100 (%) breakover voltage ( dv/dt = xv/ s ) breakover voltage ( dv/dt = 1v/ s ) typical example t j = 150 c i quadrant iii quadrant supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c commutation characteristics (t j = 125 c) critical rate of rise of off-state commutating voltage (v/ s) typical example t j = 125 c i t = 4a = 500 s v d = 200v f = 3hz i quadrant iii quadrant minimum charac- teristics value rate of decay of on-state commutating current (a /ms) supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c commutation characteristics (t j = 150 c) critical rate of rise of off-state commutating voltage (v/ s) typical example t j = 150 c i t = 4a = 500 s v d = 200v f = 3hz i quadrant iii quadrant minimum charac- teristics value rate of decay of on-state commutating current (a /ms) gate trigger current vs. gate current pulse width gate current pulse width ( s) 100 (%) gate trigger current ( tw ) gate trigger current ( dc ) typical example
mar. 2002 mitsubishi semiconductor ? triac ? bcr12cs medium power use non-insulated type, planar passivation type the product guaranteed maximum junction temperature 150 c (see warning.) c 1 c 1 = 0.1~0.47 f r 1 = 47~100 ? c 0 = 0.1 f r 0 = 100 ? c 0 r 0 r 1 6 ? 6 ? 6 ? 6v 6v 6v r g r g r g a v a v a v load recommended circuit values around the triac test procedure 1 test procedure 3 test procedure 2 gate trigger characteristics test circuits


▲Up To Search▲   

 
Price & Availability of BCR12CS-12

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X